Наращенная сумма долга формула. Первоначальная сумма наращение наращенная сумма

Обычная годовая рента

Пусть в конце каждого года в течение n лет на расчетный счет вносится по R рублей, проценты начисляются один раз в года по ставке i . В этом случае первый взнос к концу срока ренты возрастет до величины R (1+ i ) n -1 , так как на сумму R проценты начислялись в течение n -1 года. Второй взнос увеличится до R (1+ i ) n -2 и т.д. На последний взнос проценты не начисляются. Таким образом, в конце срока ренты ее наращенная сумма будет равна сумме членов геометрической прогрессии

S=R+R(1+i)+R(1+i) 2 +. . . + R(1+i) n-1 ,

в которой первый член равен R , знаменатель (1+ i ) , число членов n . Эта сумма равна

, (1.1)

где

(1.2)

и называется коэффициентом наращения ренты . Он зависит только от срока ренты n и уровня процентной ставки i . Поэтому его значения могут быть представлены в таблице с двумя входами.

Пример

В течение 3 лет на расчетный счет в конце каждого года поступает по 10 млн. руб., на которые начисляются проценты по сложной годовой ставке 10%. Требуется определить сумму на расчетном счете к концу указанного срока.

Решение

.

Годовая рента, начисление процентов m раз в году

Посмотрим как усложнится формула, если предположить теперь, что платежи делают один раз в конце года, а проценты начисляют m раз в году. Это означает, что применяется каждый раз ставка j / m , где j - номинальная ставка процентов. Тогда члены ренты с начисленными до конца срока процентами имеют вид

R(1+j/m) m(n-1) , R(1+j/m) m(n-2) , . . . , R.

Если прочитать предыдущую строку справа налево, то нетрудно увидеть, что перед нами опять геометрическая прогрессия, первым членом которой является R , знаменателем (1+ j / m ) m , а число членов n . Сумма членов этой прогрессии и будет наращенной суммой ренты. Она равна

. (1.3)

Рента p -срочная, m =1

Найдем наращенную сумму при условии, что рента выплачивается p раз в году равными платежами, а проценты начисляются один раз в конце года. Если R - годовая сумма платежей, то размер отдельного платежа равен R / p . Тогда последовательность платежей с начисленными до конца срока процентами также представляет собой геометрическую прогрессию, записанную в обратном порядке,

,

у которой первый член R / p , знаменатель (1+ i ) 1/ p , общее число членов np . Тогда наращенная сумма рассматриваемой ренты равна сумме членов этой геометрической прогрессии

, (1.4)

где

(1.5)

коэффициент наращения p -срочной ренты при m =1 .

Рента p -срочная, p = m

В контрактах часто начисление процентов и поступление платежа совпадают во времени. Таким образом число платежей p в году и число начислений процентов m совпадают, т.е. p = m . Тогда для получения формулы расчета наращенной суммы можно воспользоваться аналогией с годовой рентой и одноразовым начислением процентов в конце года, для которой

.

Различие будет лишь в том, что все параметры теперь характеризуют ставку и платеж за период, а не за год.

Таким образом получаем

. (1.6)

Рента p -срочная, p ³ 1, m ³ 1

Это самый общий случай p -срочной ренты с начислением процентов m раз в году, причем, возможно p ³ m .

Первый член ренты R / p , уплаченный спустя 1/ p года после начала, составит к концу срока вместе с начисленными на него процентами

.

Второй член ренты к концу срока возрастет до

и т.д. Последний член этой записанной в обратном порядке геометрической прогрессии равен R / p , ее знаменатель (1+ j / m ) m / p , число членов nm .

В результате получаем наращенную сумму

. (1.7)

Отметим, что из нее легко получить все рассмотренные выше частные случаи, задавая соответствующие значения p и m .

Дисконтирование

Современная стоимость (Возвращаемая сумма)

Процентная ставка

Рис. 6. Логика финансовых операций

Математическое дисконтирование

Математическое дисконтирование представляет собой формальное решение задачи, обратной наращению первоначальной суммы ссуды. Задача в этом случае формулируется так: какую первоначальную сумму ссуды надо выдать в долг, чтобы получить в конце срока сумму S при условии, что на долг начисляются проценты по ставке i ? Решив уравнение (1) относительно P , находим:

(12)

Установленная таким путем величина P является современной величиной суммы S , которая будет выплачена через n лет. Выражение 1/(1 + n∙i ) называется дисконтным множителем , который показывает современную стоимость одной денежной единицы.

Разность (S P ) можно рассматривать не только как проценты, начисляемые на P , но и как дисконт суммы S . Обозначим последний через D . Дисконт, как скидка с конечной суммы долга необязательно определяется через процентную ставку, он может быть установлен по соглашению сторон и в виде абсолютной величины для всего срока.

Рассмотрим примеры.

Пример 8.

Через год владелец векселя, выданного коммерческим банком, должен получить по нему 220 тыс. руб. Какая сумма была внесена в банк в момент приобретения векселя, если годовая ставка составляет 12%?

Дано: Решение:

S = 220 т.р. Представим задачу графически

n = 1 год

i = 12%; n = 1 г.

S = 120т.р.

дисконтирование

Используя выражение (12) получим:
тыс. руб.

Пример 9.

Ссуда должна быть погашена через год в сумме 200 тыс. руб. Кредитор попросил погасить ссуду через 270 дней после выдачи под 10% годовых. Какую сумму получит кредитор? К = 365 дн.

Дано: Решение:

S = 200 тыс. руб. Изобразим задачу графически:

n = 1г.

n 1 = 270 дн.

i = 10%

n = 365-270

S = 200т.р.

дисконтирование

n 1 = 270

n 0 = 95 дн.

n = 365

Находим количество дней, оставшихся до погашения ссуды:

n 0 = n n 1 = 365 – 270 = 95 (дн.)

Используя выражение (12) находим:

(тыс. руб.)

Банковский или коммерческий учет (учет векселей)

При учете векселя применяется банковский учет. Согласно этому методу проценты за использование ссуды в виде дисконта начисляются на сумму, подлежащую уплате в конце срока. При этом применяется учетная ставка d . (рис. 7)

Р дисконтирование (учет) S

Рис. 7

Дисконтирование с использованием простой учетной ставки

Расчетная формула для вычисления этих процентов выводится на основе следующих рассуждений.

Пусть с 1 руб. берется годовая учетная (дисконтная, авансовая) ставка d , тогда должник получает на руки сумму (1- d ) и по истечении срока должен вернуть 1 руб. То есть, если 1 руб. – это возвращаемая сумма S , то первоначальная сумма будет равна: P = S d (при условии что срок равен одному году), или в нашем случае, P = 1 – d . Если значение S , Р и n – произвольны, то

P = S S n d = S (1 – n d ), (13)

где S∙n∙d – величина дисконта, а n – срок от момента учета до даты погашения векселя. Величина (1 – n∙d ) называется дисконтным множителем при использовании учетной процентной ставки. Учет посредством учетной ставки осуществляется чаще всего при временной базе K = 360 дней, число дней ссуды берется точное (обыкновенные проценты с точным числом дней ссуды).

Для уяснения практического приложения рассмотрим дисконтный вексель. Используя номинал векселя (S ) , учетную ставку (d ) , время, оставшееся до срока погашения (t ) , вычитают дисконт (D ) – скидку с номинала, т.е. разницу между S и Р .

Затем рассчитывают выкупную (фактурную) стоимость векселя до срока погашения

(13а)

Рассмотрим пример:

Пример 10.

Владелец векселя номиналом 100 тыс. руб. и периодом обращения 105 дн., за 15 дн. до наступления срока платежа учитывает его в банке по учетной ставке 20%. Определить сумму, полученную владельцем векселя.

Дано: Решение:

S = 100 тыс. руб. Изобразим задачу графически:

Пер. обращение – 105 дн.

n = 15 дн.

Р - ? S = 100

n = 15 дн.

Используя выражение (13а) получим:

(тыс. руб.)

В отдельных случаях может возникнуть ситуация, когда совмещается начисление процентов по ставке наращения i и дисконтирование по учетной ставке d . В этом случае, полученная при учете сумма определиться как:

P` = P (1 + n i ) (1 – n` d ) (14)

S `

где P ( S ) – номинальная сумма; n – общий срок платежного обязательства; n ` - срок от момента учета до даты погашения платежа; Р` - сумма, полученная при учете обязательства.

Пример 11.

Долговое обязательство, предусматривающее уплату 400 тыс. руб. с начисленными на них 12% годовых, подлежит погашению через 90 дн. Владелец обязательства (кредитор) учел его в банке за 15 дн. до наступления срока по учетной ставке 13,5%. Полученная сумма после учета составила:

Дано: Решение:

S = 400 тыс. руб. В этой задаче номинальная стоимость

n = 90 дн. (возвращаемая сумма) принимается за

n ` = 15 дн. первоначальную: S = P (см. график).

d = 13,5%

P (S ) =400 т.р. S `

i = 12%; n = 90 дн.

d = 13,5%; n ` = 15дн.

дисконтирование

P ` -?

1. Вначале определяем наращенную сумму обязательства S ` , принимая его номинальную стоимость за первоначальную сумму:

(тыс. руб.)

2. Находим полученную после учета сумму:

(тыс. руб.)

3. Используя выражение (14) получаем ту же сумму:

(тыс. руб.)

Необходимость использования простой учетной ставки для расчета наращенной суммы возникает в случае определения номинальной стоимости векселя при выдаче ссуды. В этом случае сумма долга, проставленная в векселе, будет равна

(15)

Величина 1/(1-n d ) в этом случае является множителем наращения при использовании простой учетной ставки.

Пример 12.

Предприниматель обратился в банк за ссудой в размере 200 тыс. руб. на срок 55 дней. Банк согласен выдать указанную сумму при условии начисления процентов по простой учетной ставке, равной 20%. Найти возвращаемую сумму.

Дано: Решение:

Р = 200 тыс. руб. В этой задаче наращение производится

n = 55 дн. по простой учетной ставке.

Р = 200 S - ?

наращение

d = 20; n = 55 дн.

Используя выражение (15) получим:

тыс. руб.

Если бы сумма выдавалась под простую процентную ставку ( i ) , то наращенная сумма была бы равна тыс.руб . , т.е. наращение по учетной ставке идет быстрее и она менее выгодна должнику 206,111 < 206,304 т.е. возвращаемая сумма в первом случае будет больше.

Определение срока ссуды при использовании учетной ставки производится по формулам:


, (16)

, (17)

где n –срок ссуды в годах; t – срок ссуды в днях; k – временная база.

Рассмотрим пример:

Пример 13.

Фирме необходим кредит в 500 тыс. руб. Банк согласен на выдачу кредита при условии, что он будет возвращен в размере 600 тыс. руб. Учетная ставка 21% годовых. На какой срок банк предоставит кредит фирме? К = 365 дней

Дано: Решение:

S = 600 тыс. руб. Графическая иллюстрация задачи

Р = 500 тыс. руб.

Р = 500 т.р. S = 600 т.р.

d = 20%; n - ?

дисконтирование

При решении подобного рода задач проще воспользоваться выражением (17) , тогда срок кредита сразу получится в днях (при использовании выражения (16) срок будет выражен в долях года):

(дн.)

Величина учетной ставки рассчитывается по формулам:

, (18)

. (19)

Пример 14.

Контракт на получение ссуды в 500 тыс. руб. предусматривает возврат долга через 300 дней в сумме 600 тыс. руб. Определим примененную банком учетную ставку. К = 365 дней.

Дано: Решение:

Р = 500 тыс. руб.

S = 600 тыс. руб.

t = 300 дней

Р = 500 т.р. дисконтирование S = 600 т.р.

d = ? t = 300 дн.

По формуле (19) получим:
или
d = 20,27%

При операциях с дисконтными финансовыми инструментами учетная ставка иногда может задаваться неявно: в виде общей относительной доли уменьшения номинала или как отношение дисконтированной суммы к номиналу; тогда d находится как или

(20)

где d ` - процент скидки; t – срок до учета (срок векселя).

Пример 15.

Размер удерживаемых процентов при выдаче полугодовой ссуды составляет 20% суммы ссуды. Определим заложенную учетную ставку процентов (дисконтную ставку). К = 365

Дано: Решение:

d ` = 20%

t = 0,5 г.(180 дн.)

К = 365 дн.

d - ?

Пример 16.

Государственные краткосрочные трехмесячные векселя котируются по курсу 90. Вычислим учетную ставку. К =360.

Дано: Решение:

P / S = 0,9 скидка в нашем случае: 1 – 0,9 = 0,1

d - ? тогда:

Рассмотрим Сложный процент (Compound Interest) – начисление процентов как на основную сумму долга, так и на начисленные ранее проценты.

Немного теории

Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.

Существуют различные методы начисления процентов. Основное их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают метод начисления по и сложным процентам.

При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга. Таким образом, база для начисления сложных процентов в отличие от использования изменяется в каждом периоде начисления. Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, называется капитализацией процентов. Иногда этот метод называют «процент на процент».

В файле примера приведен график для сравнения наращенной суммы с использованием простых и сложных процентов.

В этой статье рассмотрим начисление по сложным процентам в случае постоянной ставки. О переменной ставке в случае сложных процентов .

Начисление процентов 1 раз в год

Пусть первоначальная сумма вклада равна Р, тогда через один год сумма вклада с присоединенными процентами составит =Р*(1+i), через 2 года =P*(1+i)*(1+i)=P*(1+i)^2, через n лет – P*(1+i)^n. Таким образом, получим формулу наращения для сложных процентов:
S = Р*(1+i)^n
где S - наращенная сумма,
i - годовая ставка,
n - срок ссуды в годах,
(1+ i)^n - множитель наращения.

В рассмотренном выше случае капитализация производится 1 раз в год.
При капитализации m раз в год формула наращения для сложных процентов выглядит так:
S = Р*(1+i/m)^(n*m)
i/m – это ставка за период.
На практике обычно используют дискретные проценты (проценты, начисляемые за одинаковые интервалы времени: год (m=1), полугодие (m=2), квартал (m=4), месяц (m=12)).

В MS EXCEL вычислить наращенную сумму к концу срока вклада по сложным процентам можно разными способами.

Рассмотрим задачу : Пусть первоначальная сумма вклада равна 20т.р., годовая ставка = 15%, срок вклада 12 мес. Капитализация производится ежемесячно в конце периода.

Способ 1. Вычисление с помощью таблицы с формулами
Это самый трудоемкий способ, но зато самый наглядный. Он заключается в том, чтобы последовательно вычислить величину вклада на конец каждого периода.
В файле примера это реализовано на листе Постоянная ставка .

За первый период будут начислены проценты в сумме =20000*(15%/12) , т.к. капитализация производится ежемесячно, а в году, как известно, 12 мес.
При начислении процентов за второй период, в качестве базы, на которую начисляются %, необходимо брать не начальную сумму вклада, а сумму вклада в конце первого периода (или начале второго). И так далее все 12 периодов.

Способ 2. Вычисление с помощью формулы Наращенных процентов
Подставим в формулу наращенной суммы S = Р*(1+i)^n значения из задачи.
S = 20000*(1+15%/12)^12
Необходимо помнить, что в качестве процентной ставки нужно указывать ставку за период (период капитализации).
Другой вариант записи формулы – через функцию СТЕПЕНЬ()
=20000*СТЕПЕНЬ(1+15%/12; 12)

Способ 3. Вычисление с помощью функции БС().
Функция БС() позволяет определить инвестиции при условии периодических равных платежей и постоянной процентной ставки, т.е. она предназначена прежде всего для расчетов в случае . Однако, опустив 3-й параметр (ПЛТ=0), можно ее использовать и для расчета сложных процентов.
=-БС(15%/12;12;;20000)

Или так =-БС(15%/12;12;0;20000;0)

Примечание . В случае переменной ставки для нахождения Будущей стоимости по методу сложных процентов БЗРАСПИС() .

Определяем сумму начисленных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. на 5 лет с ежегодным начислением сложных процентов по ставке 12 % годовых. Определить сумму начисленных процентов.

Сумма начисленных процентов I равна разности между величиной наращенной суммы S и начальной суммой Р. Используя формулу для определения наращенной суммы S = Р*(1+i)^n, получим:
I = S – P= Р*(1+i)^n – Р=P*((1+i)^n –1)=150000*((1+12%)^5-1)
Результат: 114 351,25р.
Для сравнения: начисление по простой ставке даст результат 90 000р. (см. файл примера ).

Определяем Срок долга

Рассмотрим задачу: Клиент банка положил на депозит некую сумму с ежегодным начислением сложных процентов по ставке 12 % годовых. Через какой срок сумма вклада удвоится?
Логарифмируя обе части уравнения S = Р*(1+i)^n, решим его относительно неизвестного параметра n.

В файле примера приведено решение, ответ 6,12 лет.

Вычисляем ставку сложных процентов

Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. с ежегодным начислением сложных процентов. При какой годовой ставке сумма вклада удвоится через 5 лет?

В файле примера приведено решение, ответ 14,87%.

Примечание . Об эффективной ставке процентов .

Учет (дисконтирование) по сложным процентам

Дисконтирование основывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход.
Рассмотрим 2 вида учета: математический и банковский.

Математический учет . В этом случае решается задача обратная наращению по сложным процентам, т.е. вычисления производятся по формуле Р=S/(1+i)^n
Величину Р, полученную дисконтированием S, называют современной, или текущей стоимостью, или приведенной величиной S.
Суммы Р и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме Р, выплачиваемой в настоящий момент. Здесь разность D = S - P называется дисконтом.

Пример . Через 7 лет страхователю будет выплачена сумма 2000000 руб. Определить современную стоимость суммы при условии, что применяется ставка сложных процентов в 15% годовых.
Другими словами, известно:
n = 7 лет,
S = 2 000 000 руб.,
i = 15% .

Решение. P = 2000000/(1+15%)^7
Значение текущей стоимости будет меньше, т.к. открыв сегодня вклад на сумму Р с ежегодной капитализацией по ставке 15% мы получим через 7 лет сумму 2 млн. руб.

Тот же результат можно получить с помощью формулы =ПС(15%;7;;-2000000;1)
Функция ПС() возвращает приведенную (к текущему моменту) стоимость инвестиции и .

Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле:
Р = S*(1- dсл)^n
где dcл - сложная годовая учетная ставка.

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Сравнив формулу наращения для сложных процентов S = Р*(1+i)^n и формулу дисконтирования по сложной учетной ставке Р = S*(1- dсл)^n придем к выводу, что заменив знак у ставки на противоположный, мы можем для расчета дисконтированной величины использовать все три способа вычисления наращения по сложным процентам, рассмотренные в разделе статьи Начисление процентов несколько раз в год .

Формулы наращенной суммы

Рассмотрим наращение для различных случаев начисления рент.

1. Обычная годовая рента.

Пусть в конце каждого года в течение п лет на расчетный счет вносится по R рублей, проценты начисляются один раз в год по ставке i . В этом случае первый взнос к концу срока ренты возрастет до величины так как на сумму R проценты начислялись в течение(п - 1) года. Второй взнос увеличится до и т.д. На последний взнос проценты не начисляются.

Таким образом, в конце срока ренты ее наращенная сумма будет равна сумме членов геометрической прогрессии

в которой первый член равен R , знаменатель (1+ i ), число членов п. Эта сумма равна

(1)

где

(2)

называетсякоэффициентом наращения ренты . Он зависит только от срока ренты п и уровня процентной ставки i .

Наращенная сумма ренты пренумерандо в (1 + i ) раз больше постнумерандо и при m = p =1

(3)

Пример 1.

Для создания пенсионного фонда в банк ежегодно выплачивается рента постнумерандо в размере 10 млн. р.. На поступающие платежи начисляются проценты по сложной годовой ставке 18%. Определить размер фонда через 6 лет.

Решение.

По формуле (1) имеем:

млн. р.

Ответ. Пенсионный фонд через 6 лет будет составлять 99,42 млн. р.

2. Годовая рента, начисление процентов m раз в году.

Пусть платежи делают один раз в конце года, а проценты начисляют т раз в году. Это означает, что применяется каждый раз ставка j / m , где j - номинальная ставка процентов. Тогда члены ренты с начисленными до конца срока процентами имеют вид

Если прочитать предыдущую строку справа налево, то получимгеометрическую прогрессию, первый членом которой R, знаменатель (1+ j / m ) m , число членов п. Сумма членов этой прогрессии будет наращенной суммой ренты. Она равна

(4)

Наращенная сумма ренты пренумерандо вычисляется по формуле

(5)

Пример 2.

В условиях примера 1 принять, что проценты банком начисляются ежеквартально по номинальной ставке 18% годовых. Сделать вывод, какой вариант начисления процентов выгоден кредитору.

Решение.

По формуле (4) имеем

= 97, 45 млн. р.

Ответ. Кредитору выгоден вариант примера 2.2., чтобы на ренту начислялись проценты ежеквартально, при этом размер фонда будет составлять 97,45 млн. р.

3. Рента p -срочная, m = 1.

Найдем наращенную сумму при условии, что рента выплачивается р раз в году равными платежами, а проценты начисляются один раз в конце года.

Если R - годовая сумма платежей, то размер отдельного платежа равен R / p . Тогда последовательность платежей с начисленными до конца срока процентами также представляет собой геометрическую прогрессию, записанную в обратном порядке,

у которой первый член R / p , знаменатель (1+ i ) 1/ p , общее число членов пр. Тогда наращенная сумма рассматриваемой ренты равна сумме членов этой геометрической прогрессии

(6)

где

(7)

коэффициент наращения р-срочной ренты при m = 1.

Наращенная сумма ренты пренумерандо вычисляется по формуле:

(8)

Пример 3.

Господин Иванов вносит в банк в конце каждого месяца по 500 р.. На поступающие суммы платежей начисляются сложные проценты по годовой процентной ставке22%. Определить размер начисленной суммы через 8 лет.

Решение.

По форомуле (6) найдем размер начисленной суммы:

S = 500 [ (1 + 0,22) 8 - 1 ] / [ (1 + 0,22) 1/8 - 1 ] = 52,806 тыс. р.

Ответ. Размер начисленной банком суммы господину Иванову через 8 лет составит 52,806 тыс. р.

4. Рента p -срочная, р = т.

В контрактах часто начисление процентов и поступление платежа совпадают во времени. Таким образом число платежей р в году и число начислений процентов т совпадают, т.е. р = т . Тогда для получения формулы расчета наращенной суммы воспользуемся аналогией с годовой рентой и одноразовым начислением процентов в конце года, для которой

Различие будет лишь в том, что все параметры теперь характеризуют ставку и платеж за период, а не за год. Таким образом, получаем

(9)

Наращенная сумма ренты пренумерандо вычисляется по формуле:

(10)

Пример 4.

Господин Петров должен отдать долг в размере 200 тыс. р. Для того, чтобы собрать эту сумму он планирует в течение 3-х лет в конце каждого полгода вносить в банк одну и ту же сумму и на нее каждые полгода начисляются сложные проценты по годовой ставке 15%. Какова должна быть величина вносимых господином Петровым полугодовых вкладов при полугодовом начислении процентов?Рассмотреть случай, когда в банк вносится сумма один раз в конце каждого года и начисление процентов производится по той же сложной процентной ставке.

Решение.

Из(9) найдем сумму (R ), которую необходимо вносить в банк каждые полгодапри полугодовом начислении сложных процентов:

R = S j / [ (1 + j/m ) mn - 1 ] = 200 × 0,15 / [ (1 + 0,15/ 2) 2 × 3 - 1 ] = 55,228 тыс. р.

Из формулы (1) найдем сумму, которую необходимо вносить в банк каждый год при годовом начислении сложных процентов:

R = S j / [ (1 + j ) n - 1 ] = 200 × 0,15 / [ (1 + 0,15) 3 - 1 ] = 57,692 тыс. р.

Ответ. Господину Петрову необходимо вносить в банк каждые полгода иполугодовом начислении сложных процентов сумму, равную 55,228 тыс. р. и сумму в 57,692 тыс. р. при ежегодном вкладе и годовом начислении сложных процентов. Первый вариант вклада для него более выгоден.

5. Рента р -срочная, p ³ 1 , m ³ 1.

Это самый общий случай р -срочной ренты с начислением процентов т раз в году, причем, возможно р ¹ т.

Первый член ренты R / p , уплаченный спустя 1/р года после начала, составит к концу срока вместе с начисленными на него процентами

Число членов п p . В результате получаем наращенную сумму

(11)

Наращенная сумма ренты пренумерандо определяется по формуле:

(12)

Пример 5.

Предприятие создает страховой фонд, для чего направляет в банк платежи в размере 100 тыс. р. в конце каждых 4-х месяцев, начислениесложных процентов банк производит 1 раз в полгода по годовой ставке 18%. Определить размер страхового фонда через 10 лет.

Решение.

По формуле (11) найдем:

тыс.руб.

Ответ. Размер страхового фонда предприятия через 10 лет составит 7790,86тыс.р.

Введение. 6

Одноразовые платежи.. 7

1.1 ОСНОВНЫЕ ПОНЯТИЯ.. 7

1.2 ПРОСТЫЕ ПРОЦЕНТЫ... 8

1.3 СЛОЖНЫЕ ПРОЦЕНТЫ... 10

1.3.1 Формула сложных процентов. 10

1.3.2 Определение будущей суммы.. 10

1.3.3 Определение текущей стоимости. Дисконтирование. 11

1.3.4 Определение срока ссуды (вклада) 12

1.3.5 Определение размера процентной ставки. 12

1.3.6 Номинальная и эффективная ставки. 13

1.4 НАЧИСЛЕНИЕ НАЛОГОВ И ПРОЦЕНТЫ... 14

1.5 ПРОЦЕНТЫ И ИНФЛЯЦИЯ.. 15

1.5.1 Основные понятия. 15

1.5.2 Учет инфляции. 16

Задачи. 18

Глава 2. 20

ПОСТОЯННЫЕ РЕГУЛЯРНЫЕ ПОТОКИ ПЛАТЕЖЕЙ.. 20

2.1 ОСНОВНЫЕ ПОНЯТИЯ.. 20

2.2 БУДУЩАЯ СУММА ПРЕНУМЕРАНДО И ПОСТНУМЕРАНДО БЕЗ ПЕРВОНАЧАЛЬНОЙ СУММЫ... 21

2.2.1 Рента пренумерандо. 21

2.2.2 Рента постнумерандо. 21

2.3 УРАВНЕНИЕ ЭКВИВАЛЕНТНОСТИ В ОБЩЕМ ВИДЕ.. 23

2.3.1 Определение будущей суммы.. 23

2.3.2 Определение текущей суммы.. 24

2.3.3 Определение периодических выплат. 24

2.3.4 Расчет срока ренты.. 25

2.3.5 Определение размера процентной ставки. 25

2.4 РЕШЕНИЕ ФИНАНСОВЫХ ЗАДАЧ С ПОМОЩЬЮ ФИНАНСОВЫХ ФУНКЦИЙ Excel 26

2.4.2 Вызов финансовых функций. 26

2.4.3 Вычисление будущего значения. 26

2.4.4 Расчет текущей суммы.. 27

2.4.5 Определение периодических выплат. 27

2.4.6 Расчет срока ренты.. 28

2.4.7 Определение размера процентной ставки. 28

2.5 ВЫБОР БАНКА КРЕДИТОВАНИЯ И СОСТАВЛЕНИЕ ПЛАНА ПОГАШЕНИЯ КРЕДИТА 29

2.5.1 Постановка задачи. 29

2.5.2 Выбор банка кредитования. 29

2.5.3 План погашения кредита. 30

2.6 ВЫПЛАТЫ p РАЗ В ГОДУ, А НАЧИСЛЕНИЕ процентов m РАЗ В ГОДУ.. 32

2.7 ВЫБОР ИПОТЕЧНОЙ ССУДЫ... 34

Задачи. 36

Глава 3. 39

ОБЩИЙ ПОТОК ПЛАТЕЖЕЙ.. 39

3.1 ОЦЕНКИ ЭФФЕКТИВНОСТИ ИНВЕСТИЦИОННЫХ ПРОЕКТОВ.. 39

3.2 РЕГУЛЯРНЫЕ НЕ ПОСТОЯННЫЕ ПЛАТЕЖИ.. 39

3.2.1 Постановка задачи. 39

3.2.2 Наращенная сумма не постоянной ренты.. 39

3.2.3 Дисконтированная сумма не постоянной ренты.. 40

3.2.4 Внутренняя норма доходности. 41

3.2.5 Дисконтный срок окупаемости инвестиционного проекта. 42

3.2.7 Сравнение эффективности двух инвестиционных проектов при платежах m раз в году 43

3.3 НЕРАВНОМЕРНЫЕ И НЕРЕГУЛЯРНЫЕ ПОТОКИ.. 46

Сумма выплат, приведенная к моменту t 0 46

3.4 БУДУЩЕЕ ЗНАЧЕНИЕ ПРИ ПЛАВАЮЩЕЙ ПРОЦЕНТНОЙ СТАВКЕ.. 47

Задачи. 48

Глава 4. 50

ОПЕРАЦИИ С ВЕКСЕЛЯМИ.. 50

4.1 ОСНОВНЫЕ ПОНЯТИЯ.. 50

4.2 ДИСКОНТИРОВАНИЕ ПО ПРОСТОЙ УЧЕТНОЙ СТАВКЕ.. 50

4.3 УЧЕТ ВЕКСЕЛЕЙ ПО СЛОЖНОЙ УЧЕТНОЙ СТАВКЕ.. 52

4.4 ВЕКСЕЛЯ И ИНФЛЯЦИЯ.. 53

4.4.1 Простая учетная ставка и инфляция. 53

4.4.2 Сложная учетная ставка и инфляция. 54

4.5 ОБЪЕДИНЕНИЕ ВЕКСЕЛЕЙ.. 55

4.5.1 Определение стоимости объединенного векселя. 55

4.5.2 Определение срока погашения объединенного вектора. 56

4.5.3 Объединение векселей с учетом инфляции. 57

4.6 ЭФФЕКТИВНОСТЬ СДЕЛОК С ВЕКСЕЛЯМИ.. 58

4.6.1 Эффективность сделок по простым процентам.. 58

4.6.2 Эффективность сделок по сложным процентам.. 59

Задачи. 60

Глава 5. 62

АМОРТИЗАЦИЯ ОСНОВНЫХ СРЕДСТВ И НЕМАТЕРИАЛЬНЫХ АКТИВОВ.. 62

5.1 ОСНОВНЫЕ ПОНЯТИЯ.. 62

5.2 ЛИНЕЙНЫЙ МЕТОД УЧЕТА АМОРТИЗАЦИИ.. 62

5.3 НЕЛИНЕЙНЫЙ, ГЕОМЕТРИЧЕСКИ-ДЕГРЕССИВНЫЙ МЕТОД УЧЕТА АМОРТИЗАЦИИ 64

5.4 ФУНКЦИИ Excel ДЛЯ РАСЧЕТА АМОРТИЗАЦИИ.. 65

5.4.1 Линейный метод учета амортизации. Функции АМР. 65

5.4.2 Метод уменьшаемого остатка (геометрически - дегрессивный метод). Функция ДДОБ 66

5.5 СРАВНЕНИЕ ЛИНЕЙНОГО МЕТОДА УЧЕТА АМОРТИЗАЦИИ С МЕТОДОМ УМЕНЬШАЕМОГО ОСТАТКА (Расчет в Excel) 66

Задачи. 68

Глава 6. 69

ЛИЗИНГ. 69

6.1 ОСНОВНЫЕ ПОНЯТИЯ.. 69

6.1.1 Финансовый (капитальный) лизинг. 70

6.1.2 Оперативный лизинг. 70

6.2 СХЕМА ПОГАШЕНИЯ ЗАДОЛЖЕННОСТИ ПО ЛИЗИНГОВОМУ КОНТРАКТУ.. 70

6.3 РАСЧЕТ ЛИЗИНГОВЫХ ПЛАТЕЖЕЙ ПО ПЕРВОЙ СХЕМЕ.. 71

6.3.1 Лизинговые платежи при линейном законе амортизации. 71

6.3.2 Лизинговые платежи с ускоренной амортизацией (метод уменьшаемого остатка) 73

6.4 РАСЧЕТ ЛИЗИНГОВЫХ ПЛАТЕЖЕЙ ПО ВТОРОЙ СХЕМЕ. 74

Следовательно, доход лизинговой компании. 75

6.5 РАСЧЕТ ЛИЗИНГОВЫХ ПЛАТЕЖЕЙ ПО ВТОРОЙ СХЕМЕ С ПОМОЩЬЮ Excel 76

6.6 ОПРЕДЕЛЕНИЕ ФИНАНСОВОЙ ЭФФЕКТИВНОСТИ ЛИЗИНГОВЫХ ОПЕРАЦИЙ.. 77

Задачи. 77

Список литературы.. 79


Введение

Финансовая математика является основой для банковских операций и коммерческих сделок. В предлагаемом пособии рассматривается начисление простых и сложных процентов при одноразовых платежах и потоках платежей, при постоянных и переменных рентах и ставках. Здесь излагается единый подход к решению широкого круга задач определения различных финансовых величин: будущей суммы сделки, текущей (дисконтированной) суммы, процентной ставки, выплат, срока сделки, ее эффективности и т. п. Учтено влияние инфляции на параметры финансовых операций. Формулы финансовой математики применяются в пособии для расчетов кредитных, депозитных, ипотечных операций, учетов векселей, для сравнения эффективности финансовых сделок. Чтобы были понятны операции по лизингу, в пособии излагаются различные методы учета амортизации.

Для изучения пособия достаточно знания школьной математики. Дан вывод всех формул.

По своей природе финансовые формулы, особенно для не постоянных и не равномерных платежей являются громоздкими, что затрудняет прямые расчеты по ним. Такие величины как процентная ставка или срок финансовой операции в общем случае не выражаются в явном виде. Для их определения необходимо решение нелинейного уравнения, например, методом итераций.

В Excel имеются встроенные финансовые функции, позволяющие легко вычислить все финансовые величины во многих практических случаях с помощью персонального компьютера. Поэтому в пособии подробно излагаются методы использования Excel для решения финансовых задач. Автор настоятельно рекомендует учащимся овладеть этими методами, чтобы в дальнейшем применять их в своей практической деятельности для анализа эффективности финансовых операций и работы своей фирмы.

В пособии приведено большое количество примеров, многие из которых представляют самостоятельную познавательную ценность. С целью закрепления теоретических знаний в конце каждой главы даны задачи для самостоятельной проработки.

Пособие "Финансовая математика" предназначено для заочников дистанционной формы образования, но может быть рекомендовано и студентам очной формы обучения по финансовым и экономическим специальностям. Пособие представляет практический интерес для работников банков, финансовых компаний, промышленных предприятий и коммерческих структур.

Принятая в пособии терминология может показаться непривычной для экономистов, воспитанных на книгах Е. М. Четыркина и его последователей. Например, процентная ставка обозначается у него буквой i (interest). Однако в математике буквой i принято обозначать целые величины (integer). Поэтому в пособии "Финансовая математика" введены обозначения, употребляемые в Excel и в .


Глава 1

Одноразовые платежи

ОСНОВНЫЕ ПОНЯТИЯ

В основе всех финансовых расчетов лежит принцип временной ценности денег . Деньги - это мера стоимости товаров и услуг. Покупательная способность денег падает по мере роста инфляции. Это означает, что денежные суммы, полученные сегодня (обозначим их PV -present value- настоящее, текущее значение), больше, ценнее тех же сумм, полученных в будущем. Для того чтобы деньги сохраняли или даже наращивали свою ценность, нужно обеспечить вложение денег, приносящее определенный доход. Принято обозначать доход буквой I (interest), на финансовом и бытовом жаргоне его называют процентом.

Существует много способов вложения (инвестиции ) денег.

Можно открыть счет в сберегательном банке, но процент должен превышать темп инфляции. Можно одолжить деньги в виде кредита с целью получения в будущем, так называемой, наращенной суммы FV (future value - будущее значение). А можно инвестировать денежные средства в производство.

Простейшей финансовой операцией является однократное предоставление или получение суммы PV с условием возврата через время t наращенной (будущей) суммы FV. Сумму, которую получает дебитор (например, мы с Вами или фирма), будем считать положительной, а ту, которую отдает кредитор (опять же мы с Вами или банк) - отрицательной.


FV

Эффективность такой операции характеризуется темпом прироста денежных средств, отношением r (rate-отношение) дохода I к базовой величине PV, взятыми по абсолютной величине.

. (1.1)

Темп роста капитала r за время t выражают десятичной дробью или в процентах и называют процентной ставкой , нормой доходности или скоростью оборота денежныхсредств за это время.

Поскольку PV и FV имеют противоположные знаки, то настоящее и будущее значения связаны соотношением (назовем его уравнением эквивалентности)

FV+ PV (1+r)= 0, (1.2)

где r - процентная ставка за время t.

Величину К, показывающую, во сколько раз будущая сумма возросла по абсолютному значению по отношению к текущей

К= FV/ PV=(1+r), (1.3)

называют коэффициентом наращения капитала .

В расчетах, как правило, за r принимают годовую процентную ставку , ее называют номинальной ставкой.

Существуют две схемы наращения капитала:

· схема простых процентов;

· схема сложных процентов.

ПРОСТЫЕ ПРОЦЕНТЫ

Схема простых процентов предполагает неизменность суммы, на которую происходит начисление процентов . Простые проценты используются в краткосрочных финансовых операциях (со сроком менее периода начисления процентов) или когда проценты периодически выплачиваются и не присоединяются к основному капиталу.

Рассмотрим два вида вклада: постой и срочный.

1) По простому вкладу (деньги по такому вкладу можно снять в любой момент) за t дней будет начислено

FV+ PV (1+ r)= 0 (1.4)

где Т - число дней в году. Коэффициент наращения при этом

В зависимости от определения Т и t применяют следующие методики.

1. Точные проценты . В России, США, Великобритании и во многих других странах принято считать Т =365 в обычном году и Т =366 - в високосном, а t -число дней между датой выдачи (получения) ссуды и датой ее погашения. Дата выдачи и дата погашения считаются за один день.

2. Банковский метод . В этом методе t определяется как точное число дней, а число дней в году принимается за 360. Метод дает преимущества банкам особенно при выдаче кредита на срок более 360 дней и широко используется коммерческими банками.

3. Обыкновенные проценты с приближенным числом дней . В некоторых странах, например во Франции, Бельгии, Швейцарии принимают Т =360, а t -приближенным, так как считается, что в месяце 30 дней.

Пример 1.1 Фирма взяла ссуду в банке на расширение производства в размере 1 млн. руб. под 18% годовых с 20.01 по 05.10 включительно. Какую сумму она должна вернуть в конце срока при начислении процентов один раз в год? Определите коэффициент наращения. Решение. Пусть год не високосный Т=365. Точное число дней между указанными датами t =258, а приближенное - t=255. 1. Из (1.4) по точному методу получим FV= -1 000 000(1+ 0,18)= -1 127 233 руб. Итак, в конце срока фирме придется отдать (FV отрицательно) на 127 233 руб. больше, чем она брала. Коэффициент наращения в этом случае К=(1+ 0,18)=1,1273 2. По банковскому методу FV= -1 000 000(1+ 0,18)= -1 129 000 руб. К=(1+ 0,18)=1,129

2) По срочному вкладу (деньги кладутся в банк на определенный срок: полгода, год или другой) проценты начисляются через определенные периоды. Обозначим
m -число периодов в году.

m =12 - при ежемесячном начислении процентов;

m =4 - при ежеквартальном начислении;

m =2 - при начислении раз в полугодие;

m =1 - при начислении раз в год.

В этом случае процентная ставка за один период составит величину , и уравнение эквивалентности запишется в виде

FV + PV (1+ )= 0 (1.5)

Коэффициент наращения

Определим наращенную сумму


По формулам (1.2)-(1.5) можно решить обратную задачу : какую первоначальную сумму PV нужно дать в долг или положить в банк, чтобы по истечении срока получить сумму FV при заданной годовой процентной ставке r.